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Abstract—We introduce an approach to integrating access to
hard and soft information sources to provide better exploitation
of all available sources in the context of coalition data-to-
decision (D2D) chains. In terms of hard (sensor-based) sources
we show how intelligence, surveillance, and reconnaissance (ISR)
assets can be represented at a relatively high level in controlled
natural language, and how this allows the automatic assignment
of sensing assets to D2D tasks. We demonstrate how the use
of Controlled English (CE) — a type of controlled natural
language designed to be readable by a native English speaker
whilst representing information in a structured, unambiguous
form — supports the informed sharing of D2D tasks and
assets between collaborating users in a coalition environment.
Moreover, we show how CE can be used in the automatic
extraction of information from unstructured and semi-structured
text information sources, providing us with a uniform way to
integrate these soft sources with the aforementioned hard sources.

I. INTRODUCTION

The term data-to-decision (D2D) characterises decision-
making domains where data and sources of data are plentiful,
but it is difficult to assemble rapidly the right set of data to
facilitate making decisions.1 D2D emphasises the collection
and fusion of actionable information, to provide a clear picture
of options, threats, and consequences [1], [2]. In this context,
decision makers may be at any level in an organisation, from
high level leaders at the centre of an information network,
to low level operatives on the edge of the network. In par-
ticular, D2D aims to empower individuals on the edge who,
prior to the widespread provision of mobile information and
communication platforms, have not traditionally been able
to benefit from the best-available actionable information. In
domains such as emergency response, policing, and military
operations, empowering such individuals is important since
they are the ones whose actions will have a direct effect on
the unfolding situation. Because the situation evolves rapidly,
the information-provisioning infrastructure that supports D2D
activity must be agile, being responsive to changes in the
decision-maker’s needs and the availability of relevant sources.

We observe that an agile D2D information infrastructure
requires information to flow in two directions:

• Forwards from data to decision: a decision-maker needs
to take decisions based on actionable information, pro-

1http://www.acq.osd.mil/chieftechnologist/areas/dtd.html
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Fig. 1. The direction-collection-processing-dissemination (DCPD) cycle

cessed from data collected by sensors (for example,
imagery or audio data) or retrieved from other sources
(for example, eyewitness reports, newsfeeds).

• Backwards from the intended decision to relevant infor-
mation assets: a decision-maker needs to determine what
kinds of information will help them achieve their overall
intent, and thereby identify suitable assets.

It has commonly been observed (for example, in [3]) that
these flows form part of a continuous cycle. The stages in this
cycle correspond to stages in the intelligence process, which
in the UK are referred to as direction, collection, processing,
and dissemination (DCPD). Figure 1 shows the DCPD cycle.
The stages in this cycle are defined as follows2:

• Direction: the determination of information needs and
sources relevant to an intended decision.

• Collection: the acquisition of data from relevant sources
(for example, sensors, databases, or feeds).

• Processing: turning collected data into usable information
(for example, by addition of context, indexing, fusion, or
filtering).

• Dissemination: the transmission of processed information
to decision makers.

The process is considered a cycle because received information
typically provokes further information needs; for example, to
obtain more detailed observations on a newly-detected object
of interest, or to explore the feasibility of possible responses
to a perceived threat.

2A US variant of the DCPD cycle (called TCPED) refers to direction as
tasking and breaks the DCPD processing step into two stages, processing and
exploitation, where the former is essentially “pre-processing” to put data into
a usable form, and the latter involves putting the information into the context
of a particular decision.
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The D2D context demands that the DCPD process be
implemented in a highly agile manner, which implies that it
should be automated to the greatest extent possible. Software
can assist in many ways, from the identification of relevant
sources, to the automatic generation of queries and sensor
tasking requests, to the composition and invocation of useful
information-processing services, to the selection of appropriate
dissemination mechanisms which take into account the ca-
pabilities of an end-user’s (mobile) device. Infrastructure to
support D2D activities must be resilient in the face of rapidly-
changing information needs and availability of assets (for
example, sensors may fail or sources may go offline). Many of
the technical elements required for an agile and resilient D2D-
supporting system are discussed in [4]. Any system to support
D2D needs to be capable of exploiting both hard and soft
sources. Hard sources are those derived from physics-based
sensing (for example, data collected from video, acoustic, or
seismic sensors) while soft sources originate from humans (for
example, eyewitness reports, newsfeeds, or text messages).

In this paper, we propose the use of a controlled natural
language (CNL) as an enabling component of an agile in-
frastructure to support D2D activities. A CNL is a subset
of a natural language, commonly English, with restricted
syntax and vocabulary. Often they are used to provide an
information representation that is easily machine processable
(with low complexity and no ambiguity) while also being
human-readable (see, for example, [5]). We show how a form
of Controlled English (CE) can be used to represent elements
necessary for the automation of the DCPD cycle, as follows:

A. Information needs: a machine-processable representation
of a decision-maker’s information needs is a prerequisite
for software assistance in determining what collection
assets are relevant, as part of the direction stage.

B. Asset capabilities: metadata describing what information
an asset can provide is a prerequisite for asset selection as
part of the direction stage; this can be seen as a kind of
“matchmaking” process against the information needs (A).

C. Information products: in order for data collected from
assets (either hard or soft) to be processed further (in-
cluding fusion) it needs to be transformed into a machine-
processable form, consistent with the metadata specified
for the asset (B); this supports the processing stage, and the
ultimate delivery of data to meet the original information
needs (A) in the dissemination stage.

The rest of the paper is structured as follows: Section II
introduces a detailed but reasonably generic surveillance vi-
gnette that we will use to illustrate the CNL-based approach.
Section III summarises a number of system components from
previous work that help in automating the DCPD loop to
support agile D2D activities. Sections IV and V describe how
CNL can assist in the identification and exploitation of hard
and soft sources, respectively, and the fusion of information
from a combination of hard and soft sources. Section VI
provides a detailed walkthrough of the vignette with CNL
examples. Section VII summarises and concludes the paper.
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Fig. 2. A surveillance D2D vignette with hard and soft information fusion

II. AN ILLUSTRATIVE VIGNETTE

We introduce a small vignette which will be used in later
sections to illustrate the use of our CNL-based approach to
supporting D2D activities. An area of interest around the
intersection of four roads is shown in Figure 2. The locations
of various assets — sources of both hard and soft information
— are marked by triangles. The passage of two vehicles causes
a sequence of events, shown as numbered points on the map,
to unfold as follows:

1) A patrol on North Road reports a suspicious black
saloon car, vehicle registration ABC123, moving south.
A database query reveals that this vehicle is known to
be associated with a high value target, John Smith. A
request is issued to track the location of the vehicle. An
unmanned aerial vehicle (UAV) is assigned to this task.

2) The UAV locates and tracks the black saloon as it heads
south on North Road. The UAV reports that the vehicle
stops near Central Junction. An analyst is alerted of this,
and requests imagery from the UAV. They find that the
black saloon has stopped by the roadside next to a red
SUV. The analyst indicates that the red SUV is an object
of interest. The two vehicles now depart the junction,
the saloon heading south onto South Road, and the SUV
heading east on Eastern Road.

3) The analyst’s indication that the red SUV is now of inter-
est causes a recent report to be retrieved from a camera
system on Western Road: a red SUV passed the camera
recently; license plate recognition software determined
that its registration is XYZ789. This identification is now
associated with the SUV from Central Junction with a
high degree of certainty, given the recency of the report
and the fact that no other similar SUVs passed by.

4) As the saloon and SUV head south and east respectively,
decisions need to be taken on whether and how to track
their movements. The only available assets in the area are
the UAV and a traffic camera system on Eastern Road.
Both are capable of locating the vehicles, though the
camera system can only do so in a limited area. In the
event, the UAV is tasked to continue following the saloon
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in the South Road area.
5) The camera system on Eastern Road is tasked to issue

an alert on identifying a red SUV with license plate
XYZ789. As this only covers part of the road, local law
enforcement in the Eastern Road area are also alerted to
look out for this vehicle.

In the next section, we summarise elements of the D2D
infrastructure required to provide automated support for the
steps in this vignette.

III. D2D INFRASTRUCTURE AND SERVICES

The following is not intended to be an exhaustive list of
required infrastructure and services, but rather to identify a
number of key elements and assumptions. Following [6], [7],
we assume the existence of a service-oriented architecture:

• There is an online catalogue of available assets, described
in terms of their capabilities, and a knowledge base that
determines the selection of assets suitable for a particular
task (as part of the direction DCPD stage). In the vignette
for example, we need to know that the UAV is capable of
determining the location of a vehicle with particular fea-
tures (type and colour). Similarly, the cameras on Western
and Eastern Roads can identify vehicles by license plate.
Visibility of the asset catalogue — and access to the assets
as described below — is governed by access policies, as
highlighted in [4] but not described further here. Note that
both hard and soft assets can be catalogued in terms of
capabilities (the kinds of information they can provide).
We assume there is a procedure for allocating assets to
tasks where there are competing demands [8].

• Assets are “wrapped” as network services so they can
deliver data in terms of typed information feeds. In our
example, the UAV is tasked to deliver a series of location
reports on the target vehicle, while the cameras are tasked
to deliver reports on vehicle features (including type,
colour, and registration if visible). The UAV itself will
generate “raw” data and wrapper services will process
this into typed information (location reports). Some assets
may be capable of delivering multiple feeds; for example,
both the UAV and cameras also allow the original “raw”
imagery data corresponding to a processed report to be
retrieved (subject to available network bandwidth). Note
that these requirements address aspects of the collection,
processing, and dissemination DCPD stages.

• Soft sources are “wrapped” in similar ways to assets.
Here, the original data will be unstructured (or at best
semistructured) text, and a key challenge is to process this
to yield usable information in an agile manner. Depending
on the complexity of the text, it may be possible to
automatically extract some elements, either online (in
real-time as the messages come in) or offline (typically by
collecting them in a database and processing them, often
with reference to other sources to aid analysis). Again,
these features cover aspects of the collection, processing,
and dissemination DCPD stages.

• There is a set of ontologies describing the entities and
relationships in the domain of interest, against which
we can capture instance data. These ontologies cover
not only objects of interest in the world (for example,
vehicles, people, places, times) but also elements of the
intelligence cycle itself (for example, the various kinds of
assets and tasks). Further details on ontologies associated
with the intelligence, surveillance, and reconnaissance
domain are given in [6]. The set of ontologies must be
extensible, modular, and capable of being interlinked in
flexible ways. They support all stages of the DCPD cycle,
as we will show in the next two sections.

IV. USING CNL IN EXPLOITATION OF HARD SOURCES

As noted above, our approach depends on the existence
of a set of ontologies, representing elements of the domain
of interest as well as the DCPD process itself. In the CNL-
based approach, we use Controlled English (CE) to express
these. The purpose of CE is that it provides a human-friendly
information representation format that is directly processable
by machine agents with a clear and unambiguous underlying
semantics [9]. In this sense it is the direct equivalent of
existing technical languages such as XML, or more specifically
OWL/RDF when considering the explicit semantic meaning.
Since CE is simply an alternative representation format for
ontologies and corresponding data it is directly compatible
(through simple translation) with extant and ongoing model
development activities such as SensorML [10] and the W3C
Semantic Sensor Network Incubator Group [11]. All of the CE
examples used in this paper are thus directly processable by
machine agents and we believe more consumable by human
readers than non-CNL equivalent technical representations.
The improvement of CE syntax to allow further linguistic
variety and expressivity without undermining the unambiguous
semantic grounding is a topic of current research.

CE is used to define the conceptual model that underpins the
domain in question. These sentences take the form of concept
and relationship definitions (via “conceptualise” sentences)
and the definition of logical inference rules (not shown in
this paper). Once the conceptual model is defined subsequent
assertions can be made according to these concepts and
relationships, for example “there is a. . . ”. Extensive working
examples are given throughout this paper.

Concepts (defined by conceptualise sentences) may be
specialisations of other concepts (indicated by is a declara-
tions). Relationships may be defined between concepts (for
example, the relationship provides between the concepts
asset and capability). The following sample definitions
are from the asset ontology (see Figure 3):
conceptualise an asset type A
˜ is rated as ˜ the NIIRS rating R and
˜ provides ˜ the capability C.

conceptualise a ˜ system type ˜ S that
is an asset type.

conceptualise a ˜ sensor type ˜ S that
is a system type.
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Fig. 3. Graphical depiction of part of the CE asset ontology

conceptualise a ˜ platform type ˜ P that
is an asset type.

conceptualise the platform type P
˜ mounts ˜ the system type S.

conceptualise a ˜ UAV ˜ U that is a platform type.

conceptualise a ˜ MALE UAV ˜ M that is an UAV.
Note: MALE = Medium Altitude, Long Endurance.

conceptualise a ˜ Predator A ˜ P that is a MALE UAV.

conceptualise an ˜ EO camera ˜ E that is a sensor type.
Note: EO = Electro-optical.

Sentences beginning with ‘Note:’ are annotations. The types
of system that can be mounted on a platform, including sen-
sors, are specified using the mounts relationship, for example:
there is a MALE UAV named ’MALE UAV platform type’ that
mounts the sensor type ’EO camera sensor type’ and
mounts the sensor type ’TV camera sensor type’ and
mounts the sensor type ’FLIR camera sensor type’ and
mounts the sensor type ’LADAR sensor type’.

Here, a “prototypical” instance MALE UAV platform type

is used to capture all of the “prototypical” instances of sensor
types that can be mounted on the platform, for example EO

camera sensor type.
As described in detail in [12], we automate the assignment

of sensing assets to tasks using a knowledge base derived from
the NIIRS method of rating imagery data [13]. Thus, NIIRS
ratings are associated with assets in the above definitions. Also
following the NIIRS approach, we allow intelligence tasks to
be defined in terms of basic capabilities such as detect, identify,
and distinguish, and one or more kinds of object of interest
which we call detectables. A task is defined as follows:
conceptualise the task T
˜ requires ˜ the intelligence capability IC and
˜ is looking for ˜ the detectable thing DT and
˜ operates in ˜ the spatial area SA and
˜ operates during ˜ the time period TP and
˜ is ranked with ˜ the task priority PR.

The definition includes a spatial area-of-interest, a time period,
and a priority to allow tasks to be ranked if assets are scarce).
Example task instances will be shown in Section VI.

The NIIRS approach allows automatic matching of tasks

to asset capabilities, by means of encoding NIIRS knowledge
in machine-processable form. Here is an example knowledge
base intelligence clause in CE, for the case that wheeled
vehicles can be identified with visible imagery at NIIRS rating
4 or better:

there is an intelligence clause named ic003 that
fulfills the intelligence capability identify and
is looking for the detectable thing ’wheeled vehicle’ and
provides the capability ’visible sensing’ and
is rated as ’visible NIIRS rating 4’.

NIIRS ratings are associated with platforms and sensor
types, by means of the provides relationship:3

there is an EO camera named ’EO camera sensor type’ that
provides the capability ’visible sensing’.

there is a Predator A named ’Predator A platform type’ that
is rated as the NIIRS rating ’visible NIIRS rating 6’ and
is rated as the NIIRS rating ’RADAR NIIRS rating 4’.

From these ontology and instance declarations, we perform
automated matching of tasks to available assets (as part of the
DCPD direction stage) using the following procedure:

1) A task instance t is specified by either a user or the
system.

2) The intelligence capability and detectable

things associated with t are used to select a set of
relevant NIIRS clauses, C.

3) The combinations of NIIRS capability instances as-
sociated with the clauses in C are matched against the
potential combinations of platform type and sensor

type consistent with the mounts relationship.
4) The choice of suitable asset is thus constrained by these

combinations of platform type and sensor type; it
is further constrained by the assets available in the area-
of-interest at the time specified for task t.4

As an example, a task to detect wheeled vehicle de-
tectables requires the capabilities visible sensing and
visible NIIRS rating 4 by the example intelligence

clause above. The first of these capabilities is provided by
EO camera sensor type and the latter by Predator A

platform type. There is a mounts relationship between
these, so they constitute a deployable platform-sensor com-
bination. The asset catalogue described in Section III will
determine if an instance of this platform-sensor combination
is available for the task.

A key feature of this approach is that the user states their
task in terms of what their information requirements are,
rather than how those requirements should be fulfilled. The
NIIRS-based knowledge base determines all potential ways
of achieving the requirements. For example, identification of
vehicle types can be achieved under particular circumstances
by imagery of various kinds (visible, radar, infra-red, multi-

3As with the mounts example above, instances of the provides
relationship are defined between “prototypical” instances of the relevant sensor
and platform types.

4The final selection of an asset is made using a utility function as described
in [8] but left outside the scope of this paper.
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spectral) and also acoustic sensing [14].5

So far, we have focussed on the selection of assets for tasks.
Once an asset is assigned to collect data of a particular kind
(for example, location reports for vehicles of a particular kind
in a particular region) the collected data will be pre-processed
to present an information feed of an appropriate type. Often
this will be CNL. For example, vehicles of particular kinds
may be localised by imagery or acoustic data. In either case,
data processing services can extract the key features from the
“raw” data, and make these available as a feed of CNL reports.
This is appropriate since the task was expressed in terms of
what information is required (vehicle identifications): users
expect to receive intelligible reports rather than “raw” imagery
or acoustic data — though they may wish to access the original
data subsequently. Processing the collected data to yield CNL
reports greatly facilitates the fusion of hard and soft data; we
provide some examples in the next two sections.

V. USING CNL IN EXPLOITATION OF SOFT SOURCES

In the D2D context, there are large volumes of unstructured
data generated from intelligence reports, web commentary
and other soft information sources. There is a significant
challenge in extracting and properly representing information
from such soft sources so that it can be used to support
decision-making activities. This needs to happen rapidly when
a situation is unfolding at a high tempo. Moreover, soft and
hard information typically needs to be combined on-the-fly to
provide the best-available intelligence picture of the situation.
We see CNL as a key element of a solution here, as it offers
an approach to unstructured information processing that facil-
itates human/machine interaction through a common readable
language. The aim is to exploit the synergies of people and
machines working together to more efficiently extract task-
relevant information at a higher fidelity of representation.

We propose that the use of a CNL in this way facilitates
clearer communication between humans when discussing in-
formation presented by the system, and also enables the system
to act directly on the information without the need to transform
to/from another technical representation. The ability for the
machine to reason on the CE, and to communicate the rationale
for the reasoning, and for the human user to contribute relevant
new information in the same format we believe provides a
strong unifying representational layer.

The CE based approach that can be used in support of
Natural Language Processing is very similar to Ontology
Based Information Extraction [15] in that the underlying CE
model is used as the basis against which to run the NLP
extraction process for the target corpus. A differentiator in
our approach is that the underlying CE model is augmented
with lexical information to express the ways in which the
concepts and relationships in the model are typically expressed
in natural language corpora, and this knowledge is used by

5The public domain version of NIIRS from which we have derived our
knowledge base is restricted to imagery data; however in principle the
knowledge base can be extended where other kinds of data are applicable
to achieve a given task.

the system to attempt to identify salient information from the
corpus and output the results in the form of CE sentences.

Our example vignette deals with common kinds of objects
in surveillance/policing scenarios: people, vehicles, and places.
We have already seen how some of these are captured in the
task-related ontology of “detectable” things in the previous
section. By using existing NLP techniques, we can extract in-
formation on such objects and their features from unstructured
text messages. To consider a simple example of a message that
might be received from the patrol in step 1 of our vignette:

“Suspicious vehicle driving south: black saloon car
with license plate ABC123”

We can automatically extract from this text an observation
represented as an instance of the vehicle concept in CE:
there is a vehicle named v01253 that
has ’black saloon car’ as description and
has black as colour and
has saloon as body type and
has ABC123 as registration.

The full extraction would include additional information
about location, direction, and the origin of the report (in this
case a patrol). The CE syntax has specific extensions to handle
common types of meta-data information, including certainty.
In this vignette this could be applied in a number of contexts,
for example, the certainty associated with information gener-
ated from natural language processing, or the certainty that a
task allocation is accurate.

The CE data would be fed to any analyst who has requested
such data as part of their information requirements, and stored
for subsequent retrieval and processing. Such a use of NLP
constitutes an early part of the processing DCPD stage, and
feeds into the remainder of the cycle as follows:

• Further processing can be performed — either automat-
ically or with the intervention of an analyst — on the
extracted CE information; for example, fusing it with
information collected from other (hard or soft) sources.

• CE messages are already in a relatively convenient form
for dissemination, being human-readable.

• Information extracted in CE from soft sources can be used
automatically to generate further information requests,
automating the transition from dissemination to direction.

Since NLP is inherently imprecise it is important that the
NLP processing agent is able to communicate contextual
information about the processing result when required. For
example this may take the form of an associated certainty
related to information arising from NLP (see above), or may
be additional information regarding failed parses or other
such exceptions that can be used to trigger actions such
as requesting a human review, or making a default tasking
assumption.

VI. DETAILED WALKTHROUGH OF THE VIGNETTE

Based on the CE elements introduced in the previous two
sections, we now provide a detailed walkthrough to illus-
trate how CE can facilitate hard/soft information fusion and
automate much of the DCPD cycle for D2D activities. The
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Fig. 4. Walkthrough of the vignette

sequence of activities is summarised in Figure 4, highlighting
when fusion is performed automatically by the system and
when human intervention is required to infer new data. The
output of these fusion steps is then used by the system to
perform automatic asset allocation.

Step 1

The patrol on North Road issues the following semi-
structured text message: “Suspicious vehicle driving south:
black saloon car with license plate ABC123”. A CE processing
service uses NLP techniques to extract the following informa-
tion in CE form:

there is a vehicle named v01253 that
has ’black saloon car’ as description and
has black as colour and
has saloon as body type and
has ABC123 as registration.

Additional information about location, direction and reporting
patrol are also stored, but not shown here. The processing
service now uses the features of this message to query stored
sources for related information. CE is retrieved which deter-
mines that the vehicle with registration ABC123 is known to
be associated with a high-value target (HVT) John Smith.

the person p670467
is known as ’John Smith’ and
is a high value target and
has ABC123 as registered vehicle.

New information is automatically stated as a result (shown
as automatic fusion in Figure 4):
there is a HVT sighting named h00453 that
has the vehicle v01253 as target vehicle and
has the person p670467 as hvt candidate.

An important feature of the CE-based approach is that human-
readable rationale explaining the inference is also generated
(typically using CE inference rules, not shown here):
there is a HVT sighting named h00453 because
the person p670467 is a high value target and
the person p670467 has ABC123 as
linked vehicle registration and

the vehicle v01253 has ABC123 as registration.

The production of an HVT sighting instance automati-
cally triggers the generation of an information requirement, in
the form of a task instance (an example of an automatic and
high tempo processing-dissemination-direction chain):
there is a task named t327893 that
requires the intelligence capability localize and
is looking for the vehicle v01253 and
operates in the spatial area ’North Road’ and
is ranked with the task priority high.

NIIRS-based reasoning determines that this task can be
solved by, amongst other things, a MALE UAV equipped with
an EO camera sensor. The UAV in the area of North Road
is the only suitable asset available, and it is assigned to the
newly-generated task (shown as automatic asset allocation in
Figure 4). All of this is done without intervention by a human
analyst; a CE description of the new task may be posted
to the analyst for their information but, depending on their
preferences, they would not necessarily be alerted at this point.

Step 2

The UAV locates and starts to track the HVT’s car, posting
CE updates to the analyst’s board, for example:
there is a tracking report named tr04657 that
has the vehicle v01253 as target and
has the person p670467 as candidate hvt and
has moving as current status and
is located at the spatio-temporal point loc59695.

This report places the black saloon at a specific place and time
(spatio-temporal point). After a period of time, the UAV
produces a message that the vehicle has stopped:
there is a tracking report named tr04658 that
has the vehicle v01253 as target and
has the person p670467 as candidate hvt and
has stopped as current status and
is located at the spatio-temporal point loc69543.

Here, the spatio-temporal point loc69543 corresponds to the
known location ’Central Junction’6. At this point we
assume that the analyst wishes to be automatically alerted
to this significant change (they are interested when an HVT
reaches a potential rendezvous point) and calls up the most
recent imagery from the UAV, showing that the HVT’s black
saloon has stopped next to a red SUV. The analyst tags the
image with CE, indicating the red SUV is of interest:

6The location “Central junction” has been annotated with a spatial area,
and the proximity or containment of the current location of the vehicle
(loc69543) is computed by an existing spatial database function.
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there is a vehicle named v01892 that
has red as colour and
has SUV as body type and
is associated with the vehicle v01253.

Note that the location and source analyst details are also
saved in CE along with a link to the image, and the association
would contain more than just a link between the two vehicles
(not shown here). We now have a second vehicle of interest
(because of its indirect association with the HVT) so an
automatic tasking request is issued similar to the one in Step
1. With the vehicles co-located in the same area, the UAV is
able to take this new task in addition to its original task.

Step 3
At this point, we assume that the UAV has not been able to

obtain imagery to allow a service to identify the registration of
the red SUV. However, the analyst’s tagging of the red SUV as
being an object of interest allows the system to match this to
messages generated earlier from the roadside camera system
on Western Road:
there is a vehicle named v01879 that
has ’red SUV’ as description and
has red as colour and
has SUV as body type and
has XYZ789 as registration.

there is a vehicle sighting named vs04514 that
observed the vehicle v01879 and
has east as heading and
is located at the spatio-temporal point loc92453.

Based on an automated system search for any further
information about the red SUV, these messages are shown to
the analyst, along with a link to the associated imagery which
can be requested if desired. The analyst manually checks for
disconfirming information and concludes that the likelihood is
that this single report is the red SUV in question. We refer to
this as semi-automatic fusion in Figure 4 as the system and
analyst work cooperatively. The analyst now associates the two
sightings with the CE sentence:
the vehicle v01879 is the same as the vehicle v01892.

This “is the same as” assertion means that all the properties of
each instance are propagated across, thereby linking the pre-
viously detected registration number to the SUV from Central
Junction that the analyst wishes to track.7 This sentence is the
product of information gathered from the UAV, previously-
stored observations from the roadside camera, and the analyst’s
own intuition (for example, based on a search for additional
relevant or disconfirming information in the same timeframe
and reading of rationale behind system generated inferences).
When making “is the same as” assertions in CE, a human
or machine agent making the assertion can also record their
certainty or assumptions using the CE syntax.

Step 4
The two vehicles now begin moving, the black saloon

proceeding south, and the red SUV heading east. Our two
tracking tasks are now:

7The assumed registration may subsequently be confirmed when the vehicle
is tracked further.

T1: track the black saloon in the region of South Road;
T2: track the red SUV in the region of Eastern Road.
Unfortunately, the UAV cannot be assigned to both the South
Road and Eastern Road areas, so it must drop one of the
two tasks, T1 or T2. NIIRS-based reasoning determines that
the roadside camera system on Eastern Road is suitable for
identifying the red SUV when it passes that point. No other
asset is available in the South Road area. The allocation system
(described in detail in [8]) determines the best assignment
(again, shown as automatic asset allocation in Figure 4):

• assign the UAV to task T1;
• assign the Eastern Rd camera system to task T2.

Step 5

The asset assignment procedure allows a degree of looka-
head. The assigned camera provides only limited utility to
the task of tracking the vehicle east. Once it goes beyond
the camera’s restricted range, further assets will need to be
engaged. Prospective tasks can be generated ahead of time
as part of a “what if” analysis, to determine if assets would
be available to cover the vehicles’ potential progress. This is
beyond the scope of this paper, but is covered in [16]. This
provides further support for the direction stage of the DCPD
cycle. If assets are not likely to be available, a further option
may be to generate an alert to local law enforcement, to be
on the look out for the red SUV.

Discussion

In the walkthrough, we have shown how our approach
assists the automation of the DCPD cycle supporting decision-
making. We can see multiple iterations of the loop in evidence:
Step 1: soft information collected, processed, and dissemi-

nated from the North Rd patrol causes a direction task
to be generated, resulting in the UAV being assigned
to collect hard data;

Step 2: hard data collected and processed from the UAV and
disseminated to the analyst prompts them to request
more detailed hard data (imagery) from the UAV,
hence identifying a new information requirement (to
track the red SUV);

Step 3: the association of the red SUV with the HVT and
previously-collected identification information is part
of the exploitation aspect of the processing stage,
involving fusion of hard and soft information (with
analyst input);

Step 4: the evolving situation requires automatic modifica-
tions to the set of information requirements (as part
of the direction stage), resulting in a change to the
collection assignments;

Step 5: further iterations of the cycle are likely as the red SUV
heads east, including the potential for disseminating
an alert to local law enforcement.

Moreover, we have shown how hard/soft fusion is enabled
by common ontologies and the uniform representation of
information in CE, enabling the creation of new associations:
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• the red SUV is associated with the HVT;
• the registration of the red SUV is (probably) XYZ789.
Importantly, in the D2D context, the human analyst remains

in the loop, but we avoid overburdening them:
• direction and collection is set up automatically (steps 1,

2, 4, and 5);
• human-readable updates are posted, but the analyst is

alerted only when something significant occurs (step 2);
• relevant stored information is automatically retrieved and

aligned with new information (steps 1 and 3);
• the D2D system is cooperative: the software makes some

associations automatically, the analyst uses their judge-
ment and intuition to make others, and all information is
assembled and linked in CE (steps 2, 3, and 5).

A key point to note regarding the CE-based approach is that
rationale is available for every step, and can answer questions
such as:

• Why is the red SUV of interest?
• Why wasn’t the UAV tasked to follow the red SUV?
• Why is the red SUV asserted to have registration

XYZ789?
The CE model can be augmented by rules to address the

balance of human vs automated processing and decision-
making. Examples would include default actions in certain
situations, and fall-back steps to be taken if a required human
review is not available in a required time window. The specific
rules can be tailored to each application and can involve
contextual factors such as time of day and level of other
tasks underway, as long as these factors are present in the CE
conceptual model. Aspects of the system can thus be “tuned”
between varying levels of human vs automated processing
(although clearly there will always be some decisions that must
be taken by a human user in any such system).

VII. CONCLUSION

In this paper, we have shown various roles the use of a
controlled natural language can play in improving automation
and agility of D2D and DCPD processes, exploiting hard and
soft information sources. Communication between the human
decision-maker and the system is facilitated by a common
understanding of the CNL. In cases where the user needs to
work directly with CE, training time can be reduced, compared
with formal languages such as XML and RDF/OWL. There are
increased options for cooperative working, enabling a flexible
mix of automatic and semi-automatic fusion as seen in our
vignette. The system can generate traces of its working in
CNL that serve as rationale for what it did (or tried to do),
and trust between the user and system can be improved by
this greater degree of transparency. In our future work, we
will examine the generation and processing of more natural
sentence structures for CE, ways in which expert users can
potentially provide data or metadata to the system and thus
extend its capabilities (including the provision of valuable lo-
cal knowledge at the edges of the network), and conversational
modes of interaction between user and system.
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